- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Barrera, Omar (2)
-
Hsu, Tzu-Hsuan (2)
-
Kramer, Jack (2)
-
Lu, Ruochen (2)
-
Anderson, Ian (1)
-
Anusorn, Taran (1)
-
Campbell, Joshua (1)
-
Cho, Sinwoo (1)
-
Chulukhadze, Vakhtang (1)
-
Rinaldi, Matteo (1)
-
Saha, Kapil (1)
-
Simoni, Pietro (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this work, an Aluminum Scandium Nitride (AlScN) on Diamond Sezawa mode surface acoustic wave (SAW) platform for RF filtering at Ku-band (12-18 GHz) is demonstrated. Thanks to the high acoustic velocity and low-loss diamond substrate, the prototype resonator at 12.9 GHz achieves a high phase velocity (𝑣𝑣p) of 8671 m/s, a maximum Bode-Q of 408, and coupling coefficient (𝑘𝑘eff 2 )of 2.1%, outperforming high-velocity substrates such as SiC and sapphire by more than 20% in velocity. Resonators spanning 8 to 18 GHz are presented. The platform’s high power handling above 12.5 dBm is also experimentally validated.more » « lessFree, publicly-accessible full text available June 29, 2026
-
Barrera, Omar; Anusorn, Taran; Cho, Sinwoo; Kramer, Jack; Chulukhadze, Vakhtang; Hsu, Tzu-Hsuan; Campbell, Joshua; Anderson, Ian; Lu, Ruochen (, IEEE Microwave and Wireless Technology Letters)This letter presents a versatile design method for achieving precise frequency and bandwidth control of compact acoustic filters monolithically at millimeter wave (mmWave) in transferred thin-film lithium niobate (LiNbO3). Prototypes are implemented with lateral field excited first-order antisymmetric (A1) mode bulk acoustic resonators (XBARs). The design leverages the in-plane anisotropy of the e15 piezoelectric coefficient in 128° Y-cut LiNbO3, enabling monolithic control of electromechanical coupling ( k2 ) by simply rotating the resonator layout. This allows for filters with customizable fractional bandwidths (FBWs). Additionally, fine-tuning of the center frequency ( fc ) is achieved through selective trimming of the film for series and shunt resonators, enabling a single design to be scaled across frequencies with enhanced fabrication tolerance. To validate the approach, we designed and fabricated a filter centered at 18.6GHz, achieving a low insertion loss (IL) of 1.84 dB, and a precise designed FBW of 9.5%. This platform shows a significant promise for enabling a monolithic filter bank with precise band selection, paving the way for the next generation of mmWave acoustic filters.more » « lessFree, publicly-accessible full text available June 1, 2026
An official website of the United States government
